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The shear spinning process, where the plastic deformation zone is localized in a very small
portion of the workpiece, shows a promise for increasingly broader application to the pro-
duction of axially symmetric parts. In this paper, the three components of working force are
calculated by the newly proposed deformation model in which the spinning process is un-
derstood as shearing deformation after uniaxial yielding by bending, and shear stress, 7.
becomes k, yield limit in pure shear, in the deformation zone. The tangential forces are first
calculated and the feed forces and the normal forces are obtained by the assumption of uniform
distribution of roller pressure on the contact surface. The optimum contact area is obtained by
minimizing the bending energy required to get the assumed deformation of the blank. The
calculated forces are compared with experimental results. A comparison shows that theoretical
prediction is reasonably in good agreement with experimental results.
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i > Length of blank in its rotational direction
7m . Assumed actual contact length
7p . ldeal geometric contact length

0,0 . Radii of curvature of deformation
1. Introduction

The aim of this study is to help better understa-
ting of the process of shear spinning and to pro-
pose a better method for prediction of the power
required. The prediction of the power required to
deform the blank is very important in the choice
for the proper equipment and the process vari-
ables of the specified job. Furthermore, this po-
wer is the predominant factor affecting to the in-
teractional force between the roller and the cone.

So a number of investigations on the spinning
process, both theoretical and experimental, have
reported in the previous literatures. For example,
Colding (1959) considered cone spinning as a
combination of rolling and extrusion process,
whereas Kalpackcioglu (1961) assumed a simple
shear mechanism for the analysis of the working
forces. The complex straining effect was introduc-
ed into the solution of cone spinning by Avitzur
and Yang (1960), Kobayashi et al.(1961), and
Hayama et al. (1964) But their equations for pre-
dicting the tangential component force are of a
complex nature and require the long computation
time for its solution. Hayama and Amano (1975)
studied the form of contact between blank and
roller during shear spinning by experimental and
theoretical procedure. Moreover Hayama (1975)
estimated concretely the three components of work-
ing force using the contact area between blank
and roller obtained from his previous work. A
test method for determining the spinability of
cones was proposed by Kegg (1961). This con-
sists of shear spinning a blank on an ellipsoid-
al mandrel. On the other hand, Kalpakcioglu
proposed the stress system to get the maximum
allowable reduction in shear spinning process.
Sortais et al.(1963) studied the cone wall thick-
ness variation in conventional spinning of cones
and derived the theoretical tangential force com-
ponent by the deformation energy method. How-
ever each previous theory for the working forces

agreed with the experimental data for only a
limited range of process variables, and did not
give good results for other working conditions.

In this paper, for the reasonable derivation of
tangential force Fy, the new deformation model
was assumed to minimize the redundant work
over W and to keep the constant radial position
during the deformation. The form of contact area
obtained from the experiments of Hayama and
Amano (1975) was utilized to get the contact fac-
tor, m by the concept of uniform distribution of
pressure on the roller that was originally propos-
ed by Kobayashi et al.

After calculating the tangential force F%y, the
other components of the working forces, the feed
force Fy and normal force F},, were computed by
using the above assumptions. And the calculated
working forces were compared with the experi-
mental results.

2. Mechanics of Shear
Spinning of Cones

2.1 Deformation mode

The deformation mechanism of shear spinning
of cones is shown schematically in Fig. 1(a). The
blank material is a disk of diameter, DD, and uni-
form thickness, £,. The disk is mounted on a cir-
cular conical mandrel, which is clamped to the
head of the spinning machine, and rotated. A
forming roller is driven on tracks on the bed of
the machine parallel to the side of the mandrel.
The process is characterized by the fact that the
radial position of an element in the blank remains
constant during deformation and the angular ve-
locity is constant through the whole work piece
except the deformation zone. This demands that
the initial disk thickness, #, and the final thick-
ness of the cone, #, for the half cone angle « are
related by the equation.

lr=1t,sin & (1)

And, for simplicity, it is assumed that during one
revolution of the mandrel, the roller holds the
same position, and after one complete revolution
of the mandrel, the roller feeds fsina to x-
direction and f cos & to z-direction in Fig. 1(a).
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Fig. 1 Schematic description of the deformation in

shear spinning of cones

The form of deformation of the z-7 plane
about a radial element of the blank is assumed to
take the form of the solid line SQMR in Fig. 1
(b), where z and 7 indicate respectively the height
and the length of the blank in its rotational
direction.

Figure 1(b) corresponds to Fig. 2(a). The
curved line, 7, shows where the roller begins to
make contact with the blank, while the line, 7, is
the one obtained as a result of the geometrical
calculation. The line where the bending starts can
be drawn as BQFH in Fig. 2(a) and the shaded
area, BIC, is the actual contact area. Fig. 2(b)
shows the radial region of deformation. The de-
formation region is bounded by 7, and 7.

Let us consider an element, 7 in Fig. 1(b). The
element starts to deform at point S where its ra-
dius of curvature o’ is tend to infinity. After pass-
ing point S, the radius of curvature decreases
gradually and at point Q one-half portion of an
element becomes to yield by uniaxial tension or
compression by bending.

(b) Shear deformation

Fig. 2 Model of deformation

After passing the point Q, the circumferential
extension of an element 7 is assumed to be con-
stant until it reaches the point M while the shear
strain, ¥z is increased monotonically from zero to

( 60(9 On >(c0t ¢do—cot ¢1) along QM, where Gy
2). The difference of

(ﬂd,/) makes the radius of curvature of the

or

element decrease along QM and the element reaches
the point M.
After passing the point M, the extension of an

and @y are given by Eq. (1

element changes its sign and assumed to be con-
stant while shear strain, 7y, is increased mono-

tonically, starting from (%)(Cot ¢a—cot ¢1)
o

to (cot ¢1) on the roller along MR.

After reaching the point R, the circumferential
extension of an element, 7 will be unloaded
elastically.

In Fig. 2(a), the plastic deformation occurs
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only in region BFCB and elastic bending occurs
in region FHLCF.

To get the contact length, 7», we assumed the
following relations

—ooN T _
p(7>_2(1—m)Az_2Az (2)
and
o (r) =12 p(7) (3)

Noting that the ideal geometric contact length, 7,
is given by

No= 76 (4>
where p(#) and o’ (#) are the mean radius of cur-
vature for po(7, ) and o’ (#», ) respectively and
6 is the ideal geometric contact angle and is given
by Eq. (13).

From Eq. (2), we obtain

Im=v1—=m- 7 (5)

The radius of curvature at Point Q of an element
¥ is given by ogp

Eng

0= PEP= 4ﬁk (6>
L L1k
M. —MEP—TH (7)

According to the foregoing deformation mechanism,
we obtain the following geometrical relations
from Figs. 1 and 2.

Ye=va+7o°COS a (8)

ri=re—fsina (9)

72 —sz>cos a (10)

75=74—0.5f +sin a'+< Yo—
fo=rc—f-sina (1)
On=11n/7, Ga=10o/ 7 (12)

(PR

G=cos™

where,

A=2(r.+Rocos a)
B=7"+(2—202)?+2(2—20) Rosin a— v — 1§
C=A%+4R}-sin’a

D=AB—2R§(z—z0)sin 2a

F=B*—4R¥{ v — (z—22)% cos® a}

Z— 22—+ 1’02_<1’01_1’)2_f cos @ for 7, <7 <70

=n—f cosa for r<r<r.
Az=f cos a+ (r.—r)tan ¢,
—(ra—7)tan for 7, <r<ny (14)

=f cos a+ (r.—7)tan go—7, for 1 <r<rs,

01— 7
cot $i= for 7, <r<y
U= (rm—1)? ’ " (15a)
=0 for 1 <7<r.
cot =t for 7,<7<7. (15b)
75— (re—c)

2.2 Strain rates and stresses

For the calculation of strain rates and stresses
induced from foregoing deformation mode shown
in Fig. 1(b), it is assumed that the point Q is very
near from point S and not only the outermost
fiber but also the neutral fiber of point Q is elon-
gated by the constant tangential strain, &, given
by

eo=k//3-G (16)

which is required to get yielding the material in
uniaxial tension or compression, where the con-
stant % is the yield limit in pure shear.

This tangential strain, &, is kept constant dur-
ing second phase of straining by 7.

For brevity, it is assumed that the material is
incompressible in the elastic as well as the plastic
range. The circumferential extension, &, would
therefore be accompanied by the lateral contrac-
tion given by

Er:52:_59/2 (17)

which satisfies the condition of incompressibility
in the elastic as well as the plastic range, and is
valid under the condition of Eq. (20). After pass-
ing the point Q in Fig. 1(b), the circumferential
extension of an element 7 is assumed to be con-
stant until it reaches the point M while the shear
strain, 7,z is increased monotonically from zero to
7‘906_6 (cot ¢p2—cot ¢1) along QM. After passing
Q
M, the extension of an element changes its sign

and assumed to be constant while shear strain, 7,z
Go— On
o
(cot ¢o—cot ¢1) on the

is increased monotonically, starting from

(cot p2—cot ¢1) to 606’_ 4
Q
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roller along MR.

After reaching the point R, the circumferential
extension and shear strain will be unloaded elas-
tically.

During second phase straining, we have the
shear strain, y,; given by

&Q_e (

yre=""p— (cot ¢a—cot ¢1) (18)
Q

which is based on the assumption of the defor-
mation mode, and all the others of &;; become
zero, that is,

7ez:7ra:0 <19>

Moreover, within the frame work of beam theory,
we assume that

0r=0z=0 and 1p=15:=0 (20)

These are based on the assumption that the ele-
ment 7 is an independent beam of width d# to
which the bending moment, Mg and shear stress,
77z are only applied.

Then, the only non-vanishing stress components
are

0s=0s(7, 0), te=12(7, 0) 21
The non-vanishing components of deviatoric stress

are then given by

2 5 (22)

Os
O‘/TZ O‘é :T, O‘é :?

The rate at which the stresses do work in deform-
ing a continuous medium is given by
W: Oo€ot+ Trzlrz (23>

Finally, the stress-strain relations of Prandtl-Reuss
material require that

00:3G<88_Tkg O‘a)

and (24)
Z.-rz:G < 7.'rz_% Trz>

in the plastic range BFCB of Fig. 2.

From Eq. (18), ¥ is the mean shear strain rate
and is given by

7r==(cot ¢pa—cot ¢1) /At

where (25)

—_ 7
At 27Nr

For the integration of these equations, let us sup-
pose that the element 7 is first pulled by gs=43
% until it reaches the yield limit in tension at point
Q, and then sheared while the extension is kept
constant.

For this second straining phase Eq. (23) apply
with €,=0 and hence,

W: Z.'rzj/rz (26)

Thus, we now must integrate the equation,

0= _% OoTrzYrz
and (27)

2__ 2
Z.-rz:G (k szrz) 7'/72

under the initial conditions
6o=+3 k, tz=0 for 0=0, (28)
where
(7rz) 6=5,=0 (29)

Moreover, the Mises’ yield condition requires that,
for any 7 and @ in the region BFCB.

( %)24- %t =k (30)

throughout this second straining phase.
Integrating Eq. (27) and taking account of Eq.
(28), we obtain

o7, ) =ktanh {Cyn(r 0)) (1)

os(7, l9>:ﬁkSCCh{’%7rz(7’, 0)} (32)

For the Mises’ material, we have
(7, 0) =k 05(r, ) =0 for G— o0 (33)

It is easily verified that Egs. (31) and (32) satisfy
Eq. (27). Eq. (26) can be rewritten by utilizing
Eq. (33) for the Mises material

(26)’
The first relation of Eq.(33) was first utilized

W=k, for region BECB
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to explain the shear spinnability of metals. The
results of experiments for spinnability of ductile
metals were in good agreements with theoretical
predictions based on this assumption.

2.3 Forming power

The instantaneous rate of deformation energy,
dW 2 due to shear strain rate, 7, in the region
BFCB in Fig. 2(a), become

AW o= f ke etodrrd0
zgﬂrtho (cot ¢po—cot ¢1) dr

On the line BQF and BMI, we obtain the rate of
bending energy, dWs due to bending moment,

(34)

Mzp as follows

Mep

EP

22¢.k*

dWBZZ iE

27r7Nd7=271'rN< > dr (35)

The external work input is closely approximated
by

dW e=2nrNdF; (36)
where dF; is an instantaneous tangential force
component on the roller along Gnd7.

By equating the energy consumed to the exter-
nal work input, we obtain the following relation.

AWe=dW +dWs (37)

Inserting Egs. (34) ~ (36) into Eq. (37), we ob-
tain the instantaneous tangential force,

Te

2
F= /{kl‘o (cot ga—cot ¢1) + 224kEt0 } dr
:kl‘o(\/ﬂ?_ (Vb_f’ol)z _s/Vg - (Vb_i’m)z) <39>
2
+ 2fElLo <7c_7b>
where

NN

2
rc—rb=§sin a+,/ 75— cos @

Vb_V()l:%Sil'l a—

1

Yo ——, COS a

For the perfectly plastic-elastic material, % is given
by 0y/4/3 where 0y is the yield limit in simple
tension, and for the strain-hardening material, &
is given by ¢/, 3 where ¢ is the instantaneous
effective flow stress in simple tension.

To compute the Eq. (39), % is assumed to be
constant and is given by 6»/+/ 3 where G is the
effective stress for the mean effective strain, &, in
the deformation. And the mean effective strain
can be obtained as follows

Tc
-1 cot ¢
Em VC_Vb;{ ﬁ dr (40)

Ve —(re—rp)?
V3 (re—7s)

This definition for ¢, is the average value of ¢ in

the deformation zone, and is different from that
given by Kobayashi et al.,(1961).
They defined the mean effective stress 0» as

Gn= [ 5de / [ dz (41)

It is evident from Eq. (39) that the evaluation of
F; for given material requires knowledge of the
stress—strain curve at the shear spinning deforma-
tion rates.

These strain rates can be estimated from the
second straining of Y, and bending strain from
the equation,

é':%:Zm’N(cot $r—cot ¢1+%>/77m/3_ (42)

where 7 is given by Egs. (2) and (3).

=10/ 1—m(r) (43)

For the average value of the effective strain rates,
the value & for »={(7.+75)/2 was taken, and is
given by

B 22
Eavg=27T7N(C0t ¢2—cot ¢1+TE]?)/770H|#(%+71,)/2 (44)

in which, to compute 74, #(7) was suggested to
have a value shown in the next section.

2.4 Forming force component

The two force components, F, and F, too,
are important from the point of view of machine
design in spinning. These components are shown
in the force diagram of Fig. 3.

If it is assumed that a normal stress P acting on
the contact surface between the roller and cone is
uniformly distributed, then we obtain F; and F;
as a function of Fy.
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Fr="3~A,=PA, and Fz=%Az=PAz (45)
The effect of friction on the contact surface in
Eq. (45) is neglected and A, A, and A; are the
projected areas of the contact surface in the tan-
gential, radial, and axial direction respectively.

As soon as the ratios of projected area of the
contact surfaces are known, the two force compo-
nent, ', and F;, can be obtained from Eq. (45)
using the tangential force component, F}, deter-
mined from Eq. (39).

The projected contact areas for the tangential,
radial, and axial direction are given by

AtzfAz(l—m)dr (46)
A= j‘/ (1—m) 5o cot dodr (47)

A= [VT=m) nr (48)

where it is necessary to get the value of m for
computing the area A;, A, and A;. The form of
contact between blank and roller during shear
spinning is originally investigated by experiment-
al procedure.

Hence, in this paper, it is suggested that m is a
function of 7 as

Y —7p

Ye—7b (49)

m(7r) =me
where 7. has to be determined so as to fit the
theoretical forces to the experimental values.
The author, therefore, tried to decide the opti-
mum value of m. by minimizing the total energy
of bending consumed in the model of deforma-
tion. The model of deformation is shown in Figs.
1 and 2. The curved line, 7, shows that the roller
begins to make contact with the blank, while the
line, 7, is obtained by the geometrical relations.
If the form of deformation in the 7—z plane
about a radial element of the blank is assumed to
take the form of the solid line SQMR in Fig. I,
the line where bending starts can be drawn as
BQF (7, line) in Fig. 2.
Appling Eq. (2) and Eq. (43) to Eq. (3), then

—~7

Am 70" TIm (50)
0 0

As the form of contact of the shaded section, BIC,
varies depending on the position of the point I,
the optimum form of contact will be obtained by
minimizing the total bending energy calculated on
the model of deformation.

The bending energy on the shaded portion,
BIC, can be calculated by the following equation.

_l"/‘Mp%drd77=;/’Mp%ﬂmdr (51)

while the bending energy on the section, BFG,
may be also written as

1 _ A
[Mpydm’??—;fMp 5,070 o) dr  (52)

where Mp means the fully plastic bending moment
per unit width of the blank, and will be the value
(t30n/4).

The total bending energy can be obtained from
adding Eq. (51) to Eq.(52), and inserting Eq.
(50)

Then

Wy= szP%drzsz f 2?’2 JT=m(r)dr (53)
P o

r

Inserting Eq. (49) into Eq. (53), it becomes
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\/1—m<%> dr  (54)

The total bending energy has the lowest value

Ws :zMPf 2?2
b o

when m.=1.

As a result of the above procedures, the work-
ing forces can be estimated.

The force acting on the roller can be resolved
into Iy and F}, to match the values of force mea-
sured by the tool dynamometer.

Then,

Fy=—F,sina+F;cos a
F,=F,cos a+F;sina

3. Discussion

In this section, the working forces calculated by
the present theory are compared with the theo-
retical and experimental values for 6 different
working conditions in the Fig. 4. The compara-
tive investigations are executed for the working
forces of the present theory and experiment.

Figure 5 shows the effect of feed on the work-
ing forces, where it can be seen that, as the feed f

Ty I R,y f, 206 m,

-2y, 8,,6,

| 1, 1, Az, cotg@, cotg, l

Fig. 4 The flow chart for calculating Forces

increases, the working forces increase gradually.
Namely, increasing the feed causes the rapid in-
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Fig. 5 Relation between Forces and Feed of Roller
f Working condition : Table 1-(a)
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Table 1 Working Conditions in Shear Spinning of Cones

Condition (a) Fig. 5 | (b) Fig. 7 | (c) Fig. 8 | (d) Fig. 9 | (e) Fig. 10 | (f) Fig. 11
Half Cone Angle
22.5° 22.5° 22.5° 22.5° 15.0~30.0° 30.0°
a (deg.)-ALPA
Di R
iameter of Roller 74 30~ 120 74 74 74 74
Dg (mm)
Round-off Radius 4.0 40 20~12.0 40 40 4.0
7o
Feed
0.5~2.0 1.0 1.0 1.0 1.0 0.1~1.1
f (mm/rev.)
Thick
hickness 2.0 2.0 2.0 1.0~3.0 2.0 1.5
to (mm)
. 1 R 1
Measuring Radius 40.0 40.0 40.0 40.0 40.0 34.0
7o (mm)
Mean F1 t
can Flow Stress 13.50 13.50 13.50 14.7~127 13.50 11.40
Y ’s M 1
oung’s Modulus 7200 7200 7200 7200 7200 7200
E (kg/mm?)
Revolution per
Minutes 440 440 440 440 440 540
N (rpm)
crease in tangential force. For small feed, the 1.504
calculated tangential forces are in good agreement 1.494
with experiments than for big feed. As the feed 1.484
gets bigger the spinning process becomes unstable @ 1474
and shows the tendency of underspining, which L; 1.46+
gives lower tangential forces. % 1.454
Figure 6 show the values of & decrease as the 2 1444
feed gets bigger. For big feed of about 2 mm/rev., ;«3 1.43
the value of & is nearly equal to (cot @)/ 3. w 1429
This means that, for big feed and for strain-har- 1.414
dening material, the present solution can give 1.40-— y y T
0.5 1.0 1.5 20

lower working forces than the simple shear theory
because of the different definition for op.

The effect of diameter of roller, Dg, on working
forces is shown in Fig. 7. For bigger roller diam-
eter, the theory gives good results. But for small
diameter of roller, some difference is noticed.
Small diameter of roller cannot be used in actual
processes.

The effect of round-off of roller 7, on working
forces are shown in Fig. 8. It can be seen that the
working forces are not influenced nearly by the
radius of round-off of roller, that is, as the radius
of round-off of roller gets bigger, the working

Feed f (mm/rev.)
Fig. 6 Relation between Finite effective strain and
Feed of Roller f Working condition : Table
1-(a)

forces change slightly.

The effect of blank thickness #, on working
forces is shown in Fig. 9. As the thickness of
blank gets thicker, the working forces are increas-
ed, but the value of € remains constant. Especi-
ally, the combination of some process variables,
which contain large diameter of roller, large round-



off radius of roller, small feed and thick blank
thickness, yield large differences on feed and nor-
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working forces is shown in Fig. 10, the working angle of mandrel gets bigger. But, for normal
forces are on the decrease in its value, as the cone forces, the solid lines, show the opposite inclina-
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tion. It can be seen that the theoretical values
agree with the experimental ones for the working
forces, that is, these phenomena do not affect the
validity of the theory.

And Fig. 11 denotes the calculated and mea-
sured values for tangential force of Hayama et al.
(1964), where M. Hayama et al. did not give any
proper explanation of determinating the effective
stress, Om.

Their theoretical values for the proposed con-
tact factor, m, are in accordance with the experi-
mental values.

The tangential force in spinning is a very im-
portant quantity and is of great interest both to
the designers of power spinning machines and to
the production engineers faced with the problems
of sufficient power to carry out the spinning opera-
tion. It is encourageous to note that these are
reasonable agreements between the present theory
and experimental results.

4. Conclusion

In the study of the mechanics of the shear
spinning of cones, the following conclusions have
been reached ;

(1) The theoretical equations for the tangenti-
al force component given by Eq. (39), which is
based on the new deformation model, are good

agreement with the experimental results.

(2) The normal and feed force components cal-
culated from the relations of the theoretical con-
tact areas show also reasonable agreement be-
tween theory and experiments, which indicate, in
pact, that the ratios of the three forces are nearly
equal to the ratios of the respective projected
contact areas in three directions.

(3) From the deformation model proposed
newly, the shear stress, 7,z becomes £, yield limit
in pure shear, in the deformation zone (Eq. (33)).

(4) The good theortical results can be obtained
from the definition for the contact factor, m(7),
which is proposed as the Eq. (49).

References

Avitzur, B. and Yang, C. T., 1960, “Analysis of
Power Spinning of Cones,” Journal of Engineer-
ing for Industry, TRANS. ASME, Series B, Vol.
82, pp. 231~245.

Colding, B.N., 1959, “Shear Spinning,” ASME,
No. 59-prod-2.

Hayama, M. and Amano, T., 1975, “Analysis of
Contact Form of Roller on Sheet Blank in Shear
Spinning of Cones,” Journal of JSTP, Vol. 16,
No. 174.

Hayama, M. and Amano, T., 1975, “Experi-
ments on the Mechanism of Shear Spinning of
Cones,” Journal of JSTP, Vol. 16, No. 172.

Hayama, M., 1975, “Analysis of Working Forces
in Shear Spinning of Cones,” Journal of JSTP,
Vol. 16, No. 175.

Hayama, M., Murota, T. and Kudo, H., 1964,
“Study of Shear Spinning,”

A) I®* Report, TRANS. JSME, Vol. 30, No. 220,
1964.
B) 2™ Report, TRANS. JSME, Vol. 30, No. 220,
1964.
C) 3" Report, TRANS. JSME, Vol. 31, No. 228,
1965.

Kalpackcioglu, S., 1961, “On the Mechanics
of Shear Spinning,” Journal of Engineering for
Industry, TRANS. ASME, Series B, Vol. 83,
pp- 125~130.

Kegg, R. L., 1961, “A New Test Method for
Determination of Spinnability of Metals,” Jour-



818 Jae Hun Kim, Jun Hong Park, Chul Kim

nal of Engineering for Industry, TRANS. ASME, ASME, Series B, Vol. 83, pp. 485~495.

Series B, pp. 119~ 124. Sortais, H. C., Kobayashi, S. and Thomsen, E.
Kobayashi, S., Hall, I. K. and Thomsen, E. G., G., 1963, “Mechanics of Conventional Spinning,”

1961, “A Theory of Shear Spinning of Cones,” Journal of Engineering for Industry, TRANS.

Journal of engineering for industry, TRANS. ASME, Series B, Vol. 85, pp. 44~48.



	A Study on the Mechanics of Shear Spinning of Cones
	Abstract
	1. Introduction
	2. Mechanics of Shear Spinning of Cones
	3. Discussion
	4. Conclusion
	References


